Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.educacionsuperior.gob.ec/handle/28000/3861
metadata.dc.type: article
Título : A deep architecture for visually analyze Pap cells.
Autor : Chang Tortolero, Oscar Guillermo
Palabras clave : ARTIFICIAL NEURAL NETWORKS;COMPUTER ARCHITECTURE;TRAINING
Fecha de publicación : 2015
Citación : Chang. O. Constante. P. Gordon. Andres. (2015). A deep architecture for visually analyze Pap cells.Automatic Control (CCAC), 2015 IEEE 2nd Colombian Conference on. Colombia.
Citación : DOI;10.1109/CCAC.2015.7345210
Resumen : This work proposes a deep ANN architecture which accomplishes the reliable visual classification of abnormal Pap smear cell. The system is driven by independent agents where the first agent consists of a three layer ANN pretrained to closely track a reticle pattern. This net participates in a local close loop that oscillates and produces unique time-space versions of the visual data. This information is stabilized and sparsed in order to obtain compact data representations, with implicit space time content. The obtained representations are delivered to second level agents, formed by independent three layers ANNs dedicated to learning and recognition activities. To train the system a noise-balanced algorithm is employed, where the training set is composed by pap cells and white noise. This combination operating on finite databases and in a self controlled learning loop, auto develops enough cell recognition knowledge as to classify whole classes of Pap smear cells. The system has been tested in real time utilizing documented data bases.
URI : http://repositorio.educacionsuperior.gob.ec/handle/28000/3861
Aparece en las colecciones: Proyecto Prometeo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Repositorio.pdf10.59 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.