Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.educacionsuperior.gob.ec/handle/28000/1738
Título : A Principal Components Approach to Multidimensional Poverty: A data- driven application on Timor-Leste data
Autor : Montesdeoca Espín, Lourdes Cumandá
metadata.dc.contributor.advisor: Inder, Brett
Palabras clave : INDICADORES DE POBREZA;ANÁLISIS DE COMPONENTES PRNCIPALES;MATRIZ DE CORRELACIÓN POLICÓRICA;ECONOMÍA DEL BIENESTAR
Fecha de publicación : 15-jul-2015
Editorial : AUSTRALIA / Universidad de Monash
Citación : Montesdeoca Espín,Lourdes Cumandá. (2015). A Principal Components Approach to Multidimensional Poverty: A data- driven application on Timor-Leste data. Trabajo de titulación para Maestría de Econometría Aplicada. Universidad de Monash. Australia. 31 p.
Descripción : Since the late nineties, the discussion on the concept and measurement of poverty has centred on the Oxford Poverty and Human Development Initiative (OPHI) and its proposal known as Multidimensional Poverty Index (MPI). The MPI displays some advantages over other indices, like being more reliable than the unidimensional income/consumption poverty or more applicable for poverty alleviation programs. However, the MPI also displays some contradictions such as the approaches and techniques used to weight and to aggregate the multivariate indicators. In order to obtain the vector of weights and aggregate MPI components, there had been analysed some multivariate approaches that fluctuate between two extremes: the complete arbitrariness and the data-driven principle.
URI : http://repositorio.educacionsuperior.gob.ec/handle/28000/1738
Aparece en las colecciones: Becarios

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
T-SENESCYT-00931.pdf1.3 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.